Transport kinetics of amino acids across the resting human leg.

نویسندگان

  • K Lundholm
  • K Bennegård
  • H Zachrisson
  • F Lundgren
  • E Edén
  • A C Möller-Loswick
چکیده

Flux rates of amino acids were measured across the leg after an overnight fast in resting human volunteers. A balanced amino acid solution was, after a primed infusion, continuously infused for 2 h at each of three step-wise and increasing rates corresponding to 8.3, 16.7, 33.2 mg N/kg per h that were equivalent to 0.2, 0.4, 0.8 g N/kg per d. Flux of amino acids across the leg was compared with the flux of glucose, glycerol, lactate, free fatty acids, and oxygen. The size of the muscular tissue pool of amino acids was measured. Whole body amino acid oxidation was estimated by means of the continuous infusion of a 14C-labeled mixture of amino acids. Arterial steady state levels were obtained for most amino acids within 30 to 45 min after the primed constant infusion. Leg flux of amino acids switched from a net efflux after an overnight fast to a balanced flux between infusion rates corresponding to 0.2-0.4 g N/kg per d. At 0.8 g N/kg per d essentially all amino acids showed uptake. The infusion of amino acids stimulated leg uptake of glucose and lactate production and decreased FFA release. Oxygen uptake and leg blood flow increased significantly with increased infusion of amino acids. There was significant variability in transport rate among individual amino acids. Branched chain amino acids showed rapid transport and methionine slow transport rate. Only small changes in the muscle tissue concentration of certain amino acids were registered after 6 h of amino acid infusion despite uptake for several hours. When amino acids were infused at a rate corresponding to 0.8 g N/kg per d, the leg uptake of amino acids was 6% and the simultaneous whole body oxidation of infused amino acids was approximately 10%. Net uptake of leucine across the leg per hour was 62% of the muscle pool of free leucine when amino acids were infused at a rate corresponding to 0.4 g N/kg per d. Multiple regression analysis showed that the arterial concentration of an amino acid was the most important factor for uptake, more so than insulin concentration and blood flow. It is concluded that leg exchange of amino acids is large enough to rapidly change the pool size of the amino acids in skeletal muscle, if not counter-regulated by changes in rates of protein synthesis and degradation. Estimates of the capacity for protein synthesis and transfer RNA acceptor sites in muscles agree in order of magnitude with the net uptake of amino acids at high infusion rates of amino acids. Therefore, measurements of the balance of tyrosine, phenylalanine, and particularly methionine at steady state may reflect net balance of proteins across skeletal muscles even in short-time experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of blood cells in leucine kinetics across the human kidney.

To evaluate the role of blood cells in interorgan amino acid transport and in the estimates of regional protein turnover, we studied the effects of plasma vs. whole blood sampling on regional leucine kinetics in postabsorptive humans. Studies were carried out by combining the arteriovenous difference technique with the measurement of [14C]- and [15N]leucine isotope exchange across the human kid...

متن کامل

Amino acid metabolism in exercising man.

Arterial concentration and net exchange across the leg and splanchnic bed of 19 amino acids were determined in healthy, postabsorptive subjects in the resting state and after 10 and 40 min of exercise on a bicycle ergometer at work intensities of 400, 800, and 1200 kg-m/min. Arterio-portal venous differences were measured in five subjects undergoing elective cholecystectomy. In the resting stat...

متن کامل

Protein turnover and amino acid transport kinetics in end-stage renal disease.

Protein and amino acid metabolism is abnormal in end-stage renal disease (ESRD). Protein turnover is influenced by transmembrane amino acid transport. The effect of ESRD and hemodialysis (HD) on intracellular amino acid transport kinetics is unknown. We studied intracellular amino acid transport kinetics and protein turnover by use of stable isotopes of phenylalanine, leucine, lysine, alanine, ...

متن کامل

In vivo muscle amino acid transport involves two distinct processes.

We have tested the hypothesis that transit through the interstitial fluid, rather than across cell membranes, is rate limiting for amino acid uptake from blood into muscle in human subjects. To quantify muscle transmembrane transport of naturally occurring amino acids, we developed a novel 4-pool model that distinguishes between the interstitial and intracellular fluid compartments. Transport k...

متن کامل

Testosterone injection stimulates net protein synthesis but not tissue amino acid transport.

Testosterone administration (T) increases lean body mass and muscle protein synthesis. We investigated the effects of short-term T on leg muscle protein kinetics and transport of selected amino acids by use of a model based on arteriovenous sampling and muscle biopsy. Fractional synthesis (FSR) and breakdown (FBR) rates of skeletal muscle protein were also directly calculated. Seven healthy men...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 80 3  شماره 

صفحات  -

تاریخ انتشار 1987